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Chapter 1

Coalgebras and comodules

Coalgebras and comodules are dualisations of algebras and modules. In this
chapter we introduce the basic definitions and study several properties of
these notions. The theory of coalgebras over fields and their comodules is well
presented in various textbooks (e.g., Sweedler [45], Abe [1], Montgomery [37],
Dǎscǎlescu, Nǎstǎsescu and Raianu [14]). Since the tensor product behaves
differently over fields and rings, not all the results for coalgebras over fields
can be extended to coalgebras over rings. Here we consider base rings from
the very beginning, and part of our problems will be to find out which module
properties of a coalgebra over a ring are necessary (and sufficient) to ensure
the desired properties. In view of the main subject of this book, this chapter
can be treated as a preliminary study towards corings. Also for this reason
we almost solely concentrate on those properties of coalgebras and comodules
that are important from the module theory point of view. The extra care paid
to module properties of coalgebras will pay off in Chapter 3.

Throughout, R denotes a commutative and associative ring with a unit.

1 Coalgebras

Intuitively, a coalgebra over a ring can be understood as a dualisation of an
algebra over a ring. Coalgebras by themselves are equally fundamental ob-
jects as are algebras. Although probably more difficult to understand at the
beginning, they are often easier to handle than algebras. Readers with geo-
metric intuition might like to think about algebras as functions on spaces and
about coalgebras as objects that encode additional structure of such spaces
(for example, group or monoid structure). The main aim of this section is to
introduce and give examples of coalgebras and explain the (dual) relationship
between algebras and coalgebras.

1.1. Coalgebras. An R-coalgebra is an R-module C with R-linear maps

∆ : C → C ⊗R C and ε : C → R,

called (coassociative) coproduct and counit, respectively, with the properties

(IC ⊗∆) ◦∆ = (∆⊗ IC) ◦∆, and (IC ⊗ ε) ◦∆ = IC = (ε⊗ IC) ◦∆,

which can be expressed by commutativity of the diagrams

1



2 Chapter 1. Coalgebras and comodules

C
∆ ��

∆
��

C ⊗R C
IC⊗∆
��

C ⊗R C
∆⊗IC�� C ⊗R C ⊗R C

C
∆ ��

IC

����
���

���
���

∆
��

C ⊗R C
ε⊗IC
��

C ⊗R C IC⊗ε
�� C .

A coalgebra (C,∆, ε) is said to be cocommutative if ∆ = tw ◦∆, where

tw : C ⊗R C → C ⊗R C, a⊗ b �→ b⊗ a,

is the twist map (cf. 40.1).

1.2. Sweedler’s Σ-notation. For an elementwise description of the maps
we use the Σ-notation, writing for c ∈ C

∆(c) =
k∑
i=1

ci ⊗ c̃i =
∑

c1 ⊗ c2.

The first version is more precise; the second version, introduced by Sweedler,
turnes out to be very handy in explicit calculations. Notice that c1 and c2 do
not represent single elements but families c1, . . . , ck and c̃1, . . . , c̃k of elements
of C that are by no means uniquely determined. Properties of c1 can only be
considered in context with c2. With this notation, the coassociativity of ∆ is
expressed by∑

∆(c1)⊗ c2 =
∑

c1 1 ⊗ c1 2 ⊗ c2 =
∑

c1 ⊗ c2 1 ⊗ c2 2 =
∑

c1 ⊗∆(c2),

and, hence, it is possible and convenient to shorten the notation by writing

(∆⊗ IC)∆(c) = (IC ⊗∆)∆(c) =
∑
c1 ⊗ c2 ⊗ c3,

(IC ⊗ IC ⊗∆)(IC ⊗∆)∆(c) =
∑
c1 ⊗ c2 ⊗ c3 ⊗ c4,

and so on. The conditions for the counit are described by∑
ε(c1)c2 = c =

∑
c1ε(c2).

Cocommutativity is equivalent to
∑
c1 ⊗ c2 =

∑
c2 ⊗ c1.

R-coalgebras are closely related or dual to algebras. Indeed, the module
of R-linear maps from a coalgebra C to any R-algebra is an R-algebra.

1.3. The algebra HomR(C,A). For any R-linear map ∆ : C → C⊗RC and
an R-algebra A, HomR(C,A) is an R-algebra by the convolution product

f ∗ g = µ ◦ (f ⊗ g) ◦∆, i.e., f ∗ g(c) =
∑

f(c1)g(c2),

for f, g ∈ HomR(C,A) and c ∈ C. Furthermore,
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(1) ∆ is coassociative if and only if HomR(C,A) is an associative R-algebra,
for any R-algebra A.

(2) C is cocommutative if and only if HomR(C,A) is a commutative R-
algebra, for any commutative R-algebra A.

(3) C has a counit if and only if HomR(C,A) has a unit, for all R-algebras
A with a unit.

Proof. (1) Let f, g, h ∈ HomR(C,A) and consider the R-linear map

µ̃ : A⊗R A⊗R A→ A, a1 ⊗ a2 ⊗ a3 �→ a1a2a3.

By definition, the products (f ∗ g) ∗ h and f ∗ (g ∗ h) in HomR(C,A) are the
compositions of the maps

C ⊗R C
∆⊗IC

����
���

���
���

�

C

∆
������������

∆ ����
���

���
��

C ⊗R C ⊗R C
f⊗g⊗h �� A⊗R A⊗R A

µ̃ �� A .

C ⊗R C
IC⊗∆

��������������

It is obvious that coassociativity of ∆ yields associativity of HomR(C,A).
To show the converse, we see from the above diagram that it suffices to

prove that, (at least) for one associative algebra A and suitable f, g, h ∈
HomR(C,A), the composition µ̃ ◦ (f ⊗ g ⊗ h) is a monomorphism. So let
A = T (C), the tensor algebra of the R-module C (cf. 15.12), and f = g = h,
the canonical mapping C → T (C). Then µ̃◦ (f⊗g⊗h) is just the embedding
C ⊗ C ⊗ C = T3(C)→ T (C).

(2) If C is cocommutative and A is commutative,

f ∗ g (c) =
∑

f(c1)g(c2) =
∑

g(c1)f(c2) = g ∗ f (c),

so that HomR(C,A) is commutative. Conversely, assume that HomR(C,A) is
commutative for any commutative A. Then

µ ◦ (f ⊗ g)(∆(c)) = µ ◦ (f ⊗ g)(tw ◦∆(c)).

This implies ∆ = tw ◦∆ provided we can find a commutative algebra A and
f, g ∈ HomR(C,A) such that µ ◦ (f ⊗ g) : C ⊗R C → A is injective. For this
take A to be the symmetric algebra S(C ⊕ C) (see 15.13). For f and g we
choose the mappings

C → C ⊕ C, x �→ (x, 0), C → C ⊕ C, x �→ (0, x),
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composed with the canonical embedding C ⊕ C → S(C ⊕ C).
With the canonical isomorphism h : S(C)⊗S(C)→ S(C⊕C) (see 15.13)

and the embedding λ : C → S(C), we form h−1 ◦ µ ◦ (f ⊗ g) = λ⊗ λ. Since
λ(C) is a direct summand of S(C), we obtain that λ ⊗ λ is injective and so
µ ◦ (f ⊗ g) is injective.

(3) It is easy to check that the unit in HomR(C,A) is

C
ε−→ R

ι−→ A, c �→ ε(c)1A.

For the converse, consider the R-module A = R ⊕ C and define a unital
R-algebra

µ : A⊗R A→ A, (r, a)⊗ (s, b) �→ (rs, rb+ as).

Suppose there is a unit element in HomR(C,A),

e : C → A = R⊕ C, c �→ (ε(c), λ(c)),

with R-linear maps ε : C → R, λ : C → C. Then, for f : C → A, c �→ (0, c),
multiplication in HomR(C,A) yields

f ∗ e : C → A, c �→ (0, (IC ⊗ ε) ◦∆(c)).

By assumption, f = f ∗ e and hence IC = (IC ⊗ ε) ◦∆, one of the conditions
for ε to be a counit. Similarly, the other condition is derived from f = e ∗ f .

Clearly ε is the unit in HomR(C,R), showing the uniqueness of a counit
for C. �

Note in particular that C∗ = HomR(C,R) is an algebra with the convolu-
tion product known as the dual or convolution algebra of C.

Notation. From now on, C (usually) will denote a coassociative R-coalgebra
(C,∆, ε), and A will stand for an associative R-algebra with unit (A, µ, ι).

Many properties of coalgebras depend on properties of the base ring R.
The base ring can be changed in the following way.

1.4. Scalar extension. Let C be an R-coalgebra and S an associative com-
mutative R-algebra with unit. Then C ⊗R S is an S-coalgebra with the co-
product

∆̃ : C ⊗R S
∆⊗IS �� (C ⊗R C)⊗R S � �� (C ⊗R S)⊗S (C ⊗R S)

and the counit ε⊗ IS : C ⊗R S → S. If C is cocommutative, then C ⊗R S is
cocommutative.
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Proof. By definition, for any c⊗ s ∈ C ⊗R S,

∆̃(c⊗ s) =
∑
(c1 ⊗ 1S)⊗S (c2 ⊗ s).

It is easily checked that ∆̃ is coassociative. Moreover,

(ε⊗ IS ⊗ IC⊗RS) ◦ ∆̃(c⊗ s) =
∑

ε(c1)c2 ⊗ s = c⊗ s,

and similarly (IC⊗RS ⊗ ε⊗ IS) ◦ ∆̃ = IC⊗RS is shown.
Obviously cocommutativity of ∆ implies cocommutativity of ∆̃. �
To illustrate the notions introduced above we consider some examples.

1.5. R as a coalgebra. The ring R is (trivially) a coassociative, cocommu-
tative coalgebra with the canonical isomorphism R → R ⊗R R as coproduct
and the identity map R→ R as counit.

1.6. Free modules as coalgebras. Let F be a free R-module with basis
(fλ)Λ, Λ any set. Then there is a unique R-linear map

∆ : F → F ⊗R F, fλ �→ fλ ⊗ fλ,

defining a coassociative and cocommutative coproduct on F . The counit is
provided by the linear map ε : F → R, fλ �−→ 1.

1.7. Semigroup coalgebra. Let G be a semigroup. A coproduct and counit
on the semigroup ring R[G] can be defined by

∆1 : R[G]→ R[G]⊗R R[G], g �→ g ⊗ g, ε1 : R[G]→ R, g �→ 1.

If G has a unit e, then another possibility is

∆2 : R[G]→ R[G]⊗R R[G], g �→
{
e⊗ e if g = e,
g ⊗ e+ e⊗ g if g �= e.

ε2 : R[G]→ R, g �→
{
1 if g = e,
0 if g �= e.

Both ∆1 and ∆2 are coassociative and cocommutative.

1.8. Polynomial coalgebra. A coproduct and counit on the polynomial
ring R[X] can be defined as algebra homomorphisms by

∆1 : R[X]→ R[X]⊗R R[X], X i �→ X i ⊗X i,

ε1 : R[X]→ R, X i �→ 1, i = 0, 1, 2, . . . .

or else by

∆2 : R[X]→ R[X]⊗R R[X], 1 �→ 1, X i �→ (X ⊗ 1 + 1⊗X)i,

ε2 : R[X]→ R, 1 �→ 1, X i �→ 0, i = 1, 2, . . . .

Again, both ∆1 and ∆2 are coassociative and cocommutative.
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1.9. Coalgebra of a projective module. Let P be a finitely generated
projective R-module with dual basis p1, . . . , pn ∈ P and π1, . . . , πn ∈ P ∗.
There is an isomorphism

P ⊗R P ∗ → EndR(P ), p⊗ f �→ [a �→ f(a)p],

and on P ∗ ⊗R P the coproduct and counit are defined by

∆ : P ∗ ⊗R P → (P ∗ ⊗R P )⊗R (P ∗ ⊗R P ), f ⊗ p �→
∑
i

f ⊗ pi ⊗ πi ⊗ p,

ε : P ∗ ⊗R P → R, f ⊗ p �→ f(p).

By properties of the dual basis,

(IP⊗RP ∗ ⊗ ε)∆(f ⊗ p) =
∑
i

f ⊗ piπi(p) = f ⊗ p,

showing that ε is a counit, and coassociativity of ∆ is proved by the equality

(IP⊗RP ∗⊗∆)∆(f⊗p) =
∑

i,j
f⊗pi⊗πi⊗pj⊗πj⊗p = (∆⊗IP⊗RP ∗)∆(f⊗p).

The dual algebra of P ∗ ⊗R P is (anti)isomorphic to EndR(P ) by the bi-
jective maps

(P ∗ ⊗R P )∗ = HomR(P ∗ ⊗R P,R) � HomR(P, P
∗∗) � EndR(P ),

which yield a ring isomorphism or anti-isomorphism, depending from which
side the morphisms are acting.

For P = R we obtain R = R∗, and R∗ ⊗R R � R is the trivial coalgebra.
As a more interesting special case we may consider P = Rn. Then P ∗ ⊗R P
can be identified with the matrix ring Mn(R), and this leads to the

1.10. Matrix coalgebra. Let {eij}1≤i,j≤n be the canonical R-basis for
Mn(R), and define the coproduct and counit

∆ :Mn(R)→Mn(R)⊗RMn(R), eij �→
∑

k
eik ⊗ ekj,

ε :Mn(R)→ R, eij �→ δij .

The resulting coalgebra is called the (n, n)-matrix coalgebra over R, and we
denote it by M c

n(R).

Notice that the matrix coalgebra may also be considered as a special case
of a semigroup coalgebra in 1.7.

From a given coalgebra one can construct the
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1.11. Opposite coalgebra. Let ∆ : C → C ⊗R C define a coalgebra. Then

∆tw : C
∆−→ C ⊗R C

tw−→ C ⊗R C, c �→
∑

c2 ⊗ c1,

where tw is the twist map, defines a new coalgebra structure on C known
as the opposite coalgebra with the same counit. The opposite coalgebra is
denoted by Ccop. Note that a coalgebra C is cocommutative if and only if C
coincides with its opposite coalgebra (i.e., ∆ = ∆tw).

1.12. Duals of algebras. Let (A, µ, ι) be an R-algebra and assume RA to
be finitely generated and projective. Then there is an isomorphism

A∗ ⊗R A∗ → (A⊗R A)∗, f ⊗ g �→ [a⊗ b �→ f(a)g(b)],

and the functor HomR(−, R) = (−)∗ yields a coproduct

µ∗ : A∗ → (A⊗R A)∗ � A∗ ⊗R A∗

and a counit (as the dual of the unit of A)

ε := ι∗ : A∗ → R, f �→ f(1A).

This makes A∗ an R-coalgebra that is cocommutative provided µ is commu-
tative. If RA is not finitely generated and projective, the above construction
does not work. However, under certain conditions the finite dual of A has a
coalgebra structure (see 5.7).

Further examples of coalgebras are the tensor algebra 15.12, the symmet-
ric algebra 15.13, and the exterior algebra 15.14 of any R-module, and the
enveloping algebra of any Lie algebra.

1.13. Exercises
LetM c

n(R) be a matrix coalgebra with basis {eij}1≤i,j≤n (see 1.10). Prove that
the dual algebra M c

n(R)
∗ is an (n, n)-matrix algebra.

(Hint: Consider the basis of M∗ dual to {eij}1≤i,j≤n.)

References. Abuhlail, Gómez-Torrecillas and Wisbauer [50]; Bourbaki
[5]; Sweedler [45]; Wisbauer [210].



8 Chapter 1. Coalgebras and comodules

2 Coalgebra morphisms

To discuss coalgebras formally, one would like to understand not only isolated
coalgebras, but also coalgebras in relation to other coalgebras. In a word, one
would like to view coalgebras as objects in a category.1 For this one needs
the notion of a coalgebra morphism. Such a morphism can be defined as an
R-linear map between coalgebras that respects the coalgebra structures (co-
products and counits). The idea behind this definition is of course borrowed
from the idea of an algebra morphism as a map respecting the algebra struc-
tures. Once such morphisms are introduced, relationships between coalgebras
can be studied. In particular, we can introduce the notions of a subcoalgebra
and a quotient coalgebra. These are the topics of the present section.

2.1. Coalgebra morphisms. Given R-coalgebras C and C ′, an R-linear
map f : C → C ′ is said to be a coalgebra morphism provided the diagrams

C
f ��

∆
��

C ′

∆′
��

C ⊗R C
f⊗f �� C ′ ⊗R C ′ ,

C
f ��

ε
����

���
���

�� C ′

ε′
��
R

are commutative. Explicitly, this means that

∆′ ◦ f = (f ⊗ f) ◦∆, and ε′ ◦ f = ε,

that is, for all c ∈ C,∑
f(c1)⊗ f(c2) =

∑
f(c)1 ⊗ f(c)2, and ε′(f(c)) = ε(c).

Given an R-coalgebra C and an S-coalgebra D, where S is a commuta-
tive ring, a coalgebra morphism between C and D is defined as a pair (α, γ)
consisting of a ring morphism α : R → S and an R-linear map γ : C → D
such that

γ′ : C ⊗R S → D, c⊗ s �→ γ(c)s,

is an S-coalgebra morphism. Here we consider D as an R-module (induced
by α) and C ⊗R S is the scalar extension of C (see 1.4).

As shown in 1.3, for an R-algebra A, the contravariant functor HomR(−, A)
turns coalgebras to algebras. It also turns coalgebra morphisms into algebra
morphisms.

1The reader not familiar with category theory is referred to the Appendix, §38.
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2.2. Duals of coalgebra morphisms. For R-coalgebras C and C ′, an
R-linear map f : C → C ′ is a coalgebra morphism if and only if

Hom(f, A) : HomR(C
′, A)→ HomR(C,A)

is an algebra morphism, for any R-algebra A.

Proof. Let f be a coalgebra morphism. Putting f ∗ = HomR(f, A), we
compute for g, h ∈ HomR(C ′, A)

f ∗(g ∗ h) = µ ◦ (g ⊗ h) ◦∆′ ◦ f = µ ◦ (g ⊗ h) ◦ (f ⊗ f) ◦∆
= (g ◦ f) ∗ (h ◦ f) = f∗(g) ∗ f ∗(h).

To show the converse, assume that f ∗ is an algebra morphism, that is,

µ ◦ (g ⊗ h) ◦∆′ ◦ f = µ ◦ (g ⊗ h) ◦ (f ⊗ f) ◦∆,

for any R-algebra A and g, h ∈ HomR(C
′, A). Choose A to be the tensor

algebra T (C) of the R-module C and choose g, h to be the canonical em-
bedding C → T (C) (see 15.12). Then µ ◦ (g ⊗ h) is just the embedding
C ⊗R C → T2(C)→ T (C), and the above equality implies

∆′ ◦ f = (f ⊗ f) ◦∆,

showing that f is a coalgebra morphism. �

2.3. Coideals. The problem of determining which R-submodules of C are
kernels of a coalgebra map f : C → C ′ is related to the problem of describing
the kernel of f ⊗ f (in the category of R-modulesMR). If f is surjective, we
know that Ke (f ⊗ f) is the sum of the canonical images of Ke f ⊗R C and
C ⊗R Ke f in C ⊗R C (see 40.15). This suggests the following definition.

The kernel of a surjective coalgebra morphism f : C → C ′ is called a
coideal of C.

2.4. Properties of coideals. For an R-submodule K ⊂ C and the canonical
projection p : C → C/K, the following are equivalent:

(a) K is a coideal;

(b) C/K is a coalgebra and p is a coalgebra morphism;

(c) ∆(K) ⊂ Ke (p⊗ p) and ε(K) = 0.

If K ⊂ C is C-pure, then (c) is equivalent to:

(d) ∆(K) ⊂ C ⊗R K +K ⊗R C and ε(K) = 0.

If (a) holds, then C/K is cocommutative provided C is also.
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Proof. (a) ⇔ (b) is obvious.
(b) ⇒ (c) There is a commutative exact diagram

0 �� K ��

��

C
p ��

∆

��

C/K

∆̄
��

��

��

0

0 �� Ke (p⊗ p) �� C ⊗R C
p⊗p �� C/K ⊗R C/K �� 0,

where commutativity of the right square implies the existence of a morphism
K → Ke (p⊗p), thus showing ∆(K) ⊂ Ke (p⊗p). For the counit ε̄ : C/K →
R of C/K, ε̄ ◦ p = ε and hence ε(K) = 0

(c) ⇒ (b) Under the given conditions, the left-hand square in the above
diagram is commutative and the cokernel property of p implies the existence
of ∆̄. This makes C/K a coalgebra with the properties required.

(c) ⇔ (d) If K ⊂ C is C-pure, Ke (p⊗ p) = C ⊗R K +K ⊗R C. �

2.5. Factorisation theorem. Let f : C → C ′ be a morphism of R-
coalgebras. If K ⊂ C is a coideal and K ⊂ Ke f , then there is a commutative
diagram of coalgebra morphisms

C
p ��

f 		�
��

��
��

��
C/K

f̄

��
C ′ .

Proof. Denote by f̄ : C/K → C ′ the R-module factorisation of f : C →
C ′. It is easy to show that the diagram

C/K
f̄ ��

∆̄
��

C ′

∆′
��

C/K ⊗R C/K
f̄⊗f̄ �� C ′ ⊗R C ′

is commutative. This means that f̄ is a coalgebra morphism. �

2.6. The counit as a coalgebra morphism. View R as a trivial R-
coalgebra as in 1.5. Then, for any R-coalgebra C,

(1) ε is a coalgebra morphism;

(2) if ε is surjective, then Ke ε is a coideal.

Proof. (1) Consider the diagram

C
ε ��

∆

��

R

�
��

c � ��
	

��

ε(c)
	

��
C ⊗R C

ε⊗ε �� R⊗R R
∑
c1 ⊗ c2

� ��
∑
ε(c1)⊗ ε(c2) .
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The properties of the counit yield∑
ε(c1)⊗ ε(c2) =

∑
ε(c1)ε(c2)⊗ 1 = ε(

∑
c1ε(c2))⊗ 1 = ε(c)⊗ 1,

so the above diagram is commutative and ε is a coalgebra morphism.
(2)This is clear by (1) and the definition of coideals. �

2.7. Subcoalgebras. An R-submodule D of a coalgebra C is called a sub-
coalgebra provided D has a coalgebra structure such that the inclusion map
is a coalgebra morphism.

Notice that a pure R-submodule (see 40.13 for a discussion of purity) D ⊂
C is a subcoalgebra provided ∆D(D) ⊂ D⊗RD ⊂ C ⊗R C and ε|D : D → R
is a counit for D. Indeed, since D is a pure submodule of C, we obtain

∆D(D) = D ⊗R C ∩ C ⊗R D = D ⊗R D ⊂ C ⊗R C,

so that D has a coalgebra structure for which the inclusion is a coalgebra
morphism, as required.

From the above observations we obtain:

2.8. Image of coalgebra morphisms. The image of any coalgebra map
f : C → C ′ is a subcoalgebra of C ′.

2.9. Remarks. (1) In a general categoryA, subobjects of an object A inA are
defined as equivalence classes of monomorphisms D → A. In the definition
of subcoalgebras we restrict ourselves to subsets (or inclusions) of an object.
This will be general enough for our purposes.

(2) The fact that – over arbitrary rings – the tensor product of injective
linear maps need not be injective leads to some unexpected phenomena. For
example, a submodule D of a coalgebra C can have two distinct coalgebra
structures such that, for both of them, the inclusion is a coalgebra map (see
Exercise 2.15(3)). It may also happen that, for a submodule V of a coalgebra
C, ∆(V ) is contained in the image of the canonical map V ⊗R V → C ⊗R C,
yet V has no coalgebra structure for which the inclusion V → C is a coalgebra
map (see Exercise 2.15(4)). Another curiosity is that the kernel of a coalgebra
morphism f : C → C ′ need not be a coideal in case f is not surjective (see
Exercise 2.15(5)).

2.10. Coproduct of coalgebras. For a family {Cλ}Λ of R-coalgebras, put
C =

⊕
ΛCλ, the coproduct inMR, iλ : Cλ → C the canonical inclusions, and

consider the R-linear maps

Cλ
∆λ−→ Cλ ⊗ Cλ ⊂ C ⊗ C, ε : Cλ → R.

By the properties of coproducts of R-modules there exist unique maps
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∆ : C → C ⊗R C with ∆ ◦ iλ = ∆λ, ε : C → R with ε ◦ iλ = ελ.

(C,∆, ε) is called the coproduct (or direct sum) of the coalgebras Cλ. It is
obvious that the iλ : Cλ → C are coalgebra morphisms.

C is coassociative (cocommutative) if and only if all the Cλ have the
corresponding property. This follows – by 1.3 – from the ring isomorphism

HomR(C,A) = HomR(
⊕

ΛCλ, A) �
∏

ΛHomR(Cλ, A),

for any R-algebra A, and the observation that the left-hand side is an asso-
ciative (commutative) ring if and only if every component in the right-hand
side has this property.

Universal property of C =
⊕

ΛCλ. For a family {fλ : Cλ → C ′}Λ of coal-
gebra morphisms there exists a unique coalgebra morphism f : C → C ′ such
that, for all λ ∈ Λ, there are commutative diagrams of coalgebra morphisms

Cλ
iλ ��

fλ 		













 C

f

��
C ′ .

2.11. Direct limits of coalgebras. Let {Cλ, fλµ}Λ be a direct family of R-
coalgebras (with coalgebra morphisms fλµ) over a directed set Λ. Let lim−→Cλ
denote the direct limit in MR with canonical maps fµ : Cµ → lim−→Cλ. Then
the fλµ⊗ fλµ : Cλ⊗Cλ → Cµ⊗Cµ form a directed system (inMR) and there
is the following commutative diagram

Cµ
∆µ ��

fµ
��

Cµ ⊗ Cµ

��

fµ⊗fµ


���

����
����

���

lim−→Cλ
δ �� lim−→(Cλ ⊗ Cλ)

θ �� lim−→Cλ ⊗ lim−→Cλ,

where the maps δ and θ exist by the universal properties of direct limits. The
composition

∆lim = θ ◦ δ : lim−→Cλ → lim−→Cλ ⊗ lim−→Cλ

turns lim−→Cλ into a coalgebra such that the canonical map (e.g., [46, 24.2])

p :
⊕

ΛCλ → lim−→Cλ

is a coalgebra morphism. The counit of lim−→Cλ is the map εlim determined by
the commutativity of the diagrams

Cµ
fµ ��

εµ
���

��
��

��
��

lim−→Cλ

εlim

��
R .
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For any associative R-algebra A,

HomR(lim−→Cλ, A) � lim←−HomR(Cλ, A) ⊂
∏

ΛHomR(Cλ, A),

and from this we conclude – by 1.3 – that the coalgebra lim−→Cλ is coassociative
(cocommutative) whenever all the Cλ are coassociative (cocommutative).

Recall that for the definition of the tensor product of R-algebras A,B, the
twist map tw : A⊗R B → B ⊗R A, a⊗ b �→ b⊗ a is needed. It also helps to
define the

2.12. Tensor product of coalgebras. Let C and D be two R-coalgebras.
Then the composite map

C ⊗R D
∆C⊗∆D�� (C ⊗R C)⊗R (D ⊗R D)

IC⊗tw⊗ID �� (C ⊗R D)⊗R (C ⊗R D)

defines a coassociative coproduct on C ⊗R D, and with the counits εC of C
and εD of D the map εC⊗εD : C⊗RD → R is a counit of C⊗RD. With these
maps, C ⊗R D is called the tensor product coalgebra of C and D. Obviously
C ⊗R D is cocommutative provided both C and D are cocommutative.

2.13. Tensor product of coalgebra morphisms. Let f : C → C ′ and
g : D → D′ be morphisms of R-coalgebras. The tensor product of f and g
yields a coalgebra morphism

f ⊗ g : C ⊗R D → C ′ ⊗R D′.

In particular, there are coalgebra morphisms

IC ⊗ εD : C ⊗R D → C, εC ⊗ ID : C ⊗R D → D,

which, for any commutative R-algebra A, lead to an algebra morphism

HomR(C,A)⊗R HomR(D,A)→ HomR(C ⊗R D,A),

ξ ⊗ ζ �→ (ξ ◦ (IC ⊗ εD)) ∗ (ζ ◦ (εC ⊗ ID)),

where ∗ denotes the convolution product (cf. 1.3).

Proof. The fact that f and g are coalgebra morphisms implies commu-
tativity of the top square in the diagram

C ⊗R D
f⊗g ��

∆C⊗∆D

��

C ′ ⊗R D′

∆C′⊗∆D′
��

C ⊗R C ⊗R D ⊗R D
f⊗f⊗g⊗g ��

IC⊗tw⊗ID
��

C ′ ⊗R C ′ ⊗R D′ ⊗R D′

IC′⊗tw⊗ID′
��

C ⊗R D ⊗R C ⊗R D
f⊗g⊗f⊗g �� C ′ ⊗R D′ ⊗R C ′ ⊗R D′ ,
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while the bottom square obviously is commutative by the definitions. Com-
mutativity of the outer rectangle means that f ⊗ g is a coalgebra morphism.

By 2.2, the coalgebra morphisms C ⊗R D → C and C ⊗R D → D yield
algebra maps

HomR(C,A)→ HomR(C ⊗R D,A), HomR(D,A)→ HomR(C ⊗R D,A) ,

and with the product in HomR(C ⊗R D,A) we obtain a map

HomR(C,A)× HomR(D,A)→ HomR(C ⊗R D,A),

which is R-linear and hence factorises over HomR(C,A)⊗RHomR(D,A). This
is in fact an algebra morphism since the image of HomR(C,A) commutes with
the image of HomR(D,A) by the equalities

((ξ ◦ (IC ⊗ εD)) ∗ (ζ ◦ (εC ⊗ ID)))(c⊗ d)
=

∑
ξ ◦ (IC ⊗ εD)⊗ ζ ◦ (εC ⊗ ID)(c1 ⊗ d1 ⊗ c2 ⊗ d2)

=
∑

ξ(c1ε(d1)) ζ(ε(c2)d2)

=
∑

ξ(c1ε(c2), ζ(ε(d1)d2)

= ξ(c) ζ(d) = ζ(d) ξ(c)

= ((ζ ◦ (εC ⊗ ID)) ∗ (ξ ◦ (IC ⊗ εD)))(c⊗ d),

where ξ ∈ HomR(C,A), ζ ∈ HomR(D,A) and c ∈ C, d ∈ D. �

To define the comultiplication for the tensor product of two R-coalgebras
C,D in 2.12, the twist map tw : C ⊗R D → D ⊗R C was used. Notice that
any such map yields a formal comultiplication on C ⊗R D, whose properties
strongly depend on the properties of the map chosen.

2.14. Coalgebra structure on the tensor product. For R-coalgebras
(C,∆C , εC) and (D,∆D, εD), let ω : C ⊗R D → D⊗R C be an R-linear map.
Explicitly on elements we write ω(c⊗ d) =

∑
dω ⊗ cω. Denote by C�ωD the

R-module C ⊗R D endowed with the maps

∆̄ = (IC ⊗ ω ⊗ ID) ◦ (∆C ⊗∆D) : C ⊗R D → (C ⊗R D)⊗R (C ⊗R D),
ε̄ = εC ⊗ εD : C ⊗R D → R.

Then C�ωD is an R-coalgebra if and only if the following bow-tie diagram
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is commutative (tensor over R):

C⊗D⊗D

ω⊗ID

��










C⊗C⊗D

IC⊗ω

���
��

��
��

��
��

��
��

��
��

C⊗D

∆C⊗ID
�����������

IC⊗∆D

������������

εC⊗ID

����
���

���
���

�

ω

��

IC⊗εD

�����
���

���
���

D⊗C⊗D

ID⊗ω

���
��

��
��

��
��

��
��

��
��

C D C⊗D⊗C

ω⊗IC

����
��
��
��
��
��
��
��
��
�

D⊗C
ID⊗εC

������������εD⊗IC

��������������

ID⊗∆C ����
���

���
���

∆D⊗IC�����
���

���
�

D⊗D⊗C D⊗C⊗C .

If this holds, the coalgebra C �ω D is called a smash coproduct of C and D.

Proof. Notice that commutativity of the central trapezium (triangles)
means

(ID ⊗ εC)ω(c⊗ d) = εC(c)d, (εD ⊗ IC)ω(c⊗ d) = εD(d)c.

By definition, right counitality of ε̄ requires (IC⊗RD ⊗R ε̄) ◦ ∆̄ = IC⊗RD, that
is,

c⊗ d =
∑

c1 ⊗ (ID ⊗ εC)ω(c2 ⊗ d1)ε̄(d2) =
∑

c1 ⊗ (ID ⊗ εC)ω(c2 ⊗ d).

Applying εC⊗ID, we obtain the first equality (right triangle) for ω. Similarly,
the second equality (left triangle) is derived. A simple computation shows
that the two equalities imply counitality.

Coassociativity of ∆̄ means commutativity of the diagram

C⊗C⊗D⊗D I⊗ω⊗I�� C⊗D⊗C⊗DI⊗I⊗∆⊗∆�� C⊗D⊗C⊗C⊗D⊗D
I⊗I⊗I⊗ω⊗I
��

C⊗D

∆C⊗∆D

��

∆C⊗∆D

��

(∗) C⊗D⊗C⊗D⊗C⊗D

C⊗C⊗D⊗D I⊗ω⊗I �� C⊗D⊗C⊗D∆⊗∆⊗I⊗I�� C⊗C⊗D⊗D⊗C⊗D ,

I⊗ω⊗I⊗I⊗I
��

which is equivalent to the identity (∗)∑
c1⊗d1ω⊗c2ω1⊗d2 1

ω̄⊗c2ω2
ω̄⊗d2 2 =

∑
c1 1⊗d1ω1

ω̄⊗c1 2ω̄⊗d1ω2⊗c2
ω⊗d2.
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Applying the map εC ⊗ IC ⊗ ID ⊗ ID ⊗ IC ⊗ εD to the last module in the
diagram (∗) – or to formula (∗) – we obtain the commutative diagram and
formula

C ⊗D ⊗D
ω⊗I �� D ⊗ C ⊗D

I⊗∆C⊗I�� D ⊗ C ⊗ C ⊗D

I⊗I⊗ω
��

C ⊗D

I⊗∆D

��

∆C⊗I
��

(∗∗) D ⊗ C ⊗D ⊗ C

C ⊗ C ⊗D
I⊗ω �� C ⊗D ⊗ C

I⊗∆D⊗I�� C ⊗D ⊗D ⊗ C ,

ω⊗I⊗I
��

(∗∗)
∑

d1
ω ⊗ cω1 ⊗ d2

ω̄ ⊗ cω2
ω̄ =

∑
dω1

ω̄ ⊗ c1
ω̄ ⊗ dω2 ⊗ c2

ω.

Now assume formula (∗∗) to be given. Tensoring from the left with the
coefficients c1 and replacing c by the coefficients c2 we obtain∑

c1 ⊗ d1
ω ⊗ c2

ω
1
⊗ d2

ω̄ ⊗ c2
ω
2
ω̄ =

∑
c1 ⊗ dω1

ω̄ ⊗ c2 1
ω̄ ⊗ dω2 ⊗ c2 2

ω

=
∑
c1 1 ⊗ dω1

ω̄ ⊗ c1 2
ω̄ ⊗ dω2 ⊗ c2

ω.

Now, tensoring with the coefficients d2 from the right and replacing d by the
coefficients d1 we obtain formula (∗). So both conditions (∗∗) and (∗) are
equivalent to coassociativity of ∆̄.

Commutativity of the trapezium yields a commutative diagram

D ⊗ C ⊗ C ⊗D

ID⊗IC⊗ω
��

ID⊗εC⊗ω
������

�����
�����

�����

D ⊗ C ⊗D ⊗ C
ID⊗εC⊗ID⊗IC�� D ⊗D ⊗ C .

C ⊗D ⊗D ⊗ C

ω⊗ID⊗IC
��

εC⊗ID⊗ID⊗IC

���������������������

With this it is easy to see that the diagram (∗∗) reduces to the diagram

C ⊗D ⊗D
ω⊗ID �� D ⊗ C ⊗D

IC⊗ω
��

C ⊗D
ω ��

IC⊗∆D

��

D ⊗ C
∆D⊗IC�� D ⊗D ⊗ C,

and a similar argument with εD ⊗ IC yields the diagram

C ⊗D
ω ��

∆C⊗ID
��

D ⊗ C
ID⊗∆C�� D ⊗ C ⊗ C

C ⊗ C ⊗D
IC⊗ω �� C ⊗D ⊗ C .

ω⊗IC
��
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Notice that the two diagrams are the left and right wings of the bow-tie and
hence one direction of our assertion is proven.

Commutativity of these diagrams corresponds to the equations∑
d1
ω⊗d2ω̄⊗cωω̄ =

∑
dω1⊗dω2⊗cω,

∑
dω⊗cω1⊗cω2 =

∑
dωω̄⊗c1ω̄⊗c2ω,

and – alternatively – these can be obtained by applying ID ⊗ εC ⊗ ID ⊗ IC
and ID ⊗ IC ⊗ εD ⊗ IC to equation (∗∗).

For the converse implication assume the bow-tie diagram to be commuta-
tive. Then the trapezium is commutative and hence ε̄ is a counit. Moreover,
the above equalities hold. Tensoring the first one with the coefficients c1 and
replacing c by the coefficients c2 we obtain∑

c1 ⊗ d1
ω ⊗ d2

ω̃ ⊗ c2
ωω̃ =

∑
c1 ⊗ dω1 ⊗ dω2 ⊗ c2

ω.

Applying ω ⊗ ID ⊗ IC to this equation yields∑
d1
ωω̄ ⊗ c1

ω̄ ⊗ d2
ω̃ ⊗ c2

ωω̃ =
∑

dω1
ω̄ ⊗ c1

ω̄ ⊗ dω2 ⊗ c2
ω.

Now, tensoring the second equation with the coefficients d2 from the right,
replacing d by the coefficients d1 and then applying ID ⊗ IC ⊗ ω yields∑

d1
ω ⊗ cω1 ⊗ d2

ω̄ ⊗ cω2
ω̄ =

∑
d1
ωω̄ ⊗ c1

ω̄ ⊗ d2
ω̃ ⊗ c2

ωω̃.

Comparing the two equations we obtain (∗∗), proving the coassociativity of
∆̄. �

Notice that a dual construction and a dual bow-tie diagram apply for
the definiton of a general product on the tensor product of two R-algebras
A,B by an R-linear map ω′ : B ⊗R A → A ⊗R B. A partially dual bow-tie
diagram arises in the study of entwining structures between R-algebras and
R-coalgebras (cf. 32.1).

2.15. Exercises

(1) Let g : A → A′ be an R-algebra morphism. Prove that, for any R-coalgebra
C,

Hom(C, g) : HomR(C,A)→ HomR(C,A′)

is an R-algebra morphism.
(2) Let f : C → C ′ be an R-coalgebra morphism. Prove that, if f is bijective

then f−1 is also a coalgebra morphism.
(3) On the Z-module C = Z ⊕ Z/4Z define a coproduct

∆ : C → C ⊗Z C, (1, 0) �→ (1, 0)⊗ (1, 0),
(0, 1) �→ (1, 0)⊗ (0, 1) + (0, 1)⊗ (1, 0).



18 Chapter 1. Coalgebras and comodules

On the submodule D = Z ⊕ 2Z/4Z ⊂ C consider the coproducts

∆1 : D → D ⊗Z D, (1, 0) �→ (1, 0)⊗ (1, 0),
(0, 2) �→ (1, 0)⊗ (0, 2) + (0, 2)⊗ (1, 0),

∆2 : D → D ⊗Z D, (1, 0) �→ (1, 0)⊗ (1, 0),
(0, 2) �→ (1, 0)⊗(0, 2) + (0, 2)⊗(0, 2) + (0, 2)⊗(1, 0).

Prove that (D,∆1) and (D,∆2) are not isomorphic but the canonical inclu-
sion D → C is an algebra morphism for both of them (Nichols and Sweedler
[168]).

(4) On the Z-module C = Z/8Z ⊕ Z/2Z define a coproduct

∆ : C → C ⊗Z C, (1, 0) �→ 0,
(0, 1) �→ 4(1, 0)⊗ (1, 0)

and consider the submodule V = Z(2, 0) + Z(0, 1) ⊂ C. Prove:

(i) ∆ is well defined.
(ii) ∆(V ) is contained in the image of V ⊗R V → C ⊗R C.
(iii) ∆ : V → C ⊗R C has no lifting to V ⊗R V (check the order of the

preimage of ∆(0, 1) in V ⊗R V ) (Nichols and Sweedler [168]).
(5) Let C = Z ⊕ Z/2Z ⊕ Z, denote c0 = (1, 0, 0), c1 = (0, 1, 0), c2 = (0, 0, 1) and

define a coproduct

∆(cn) =
n∑
i=0

ci ⊗ cn−i, n = 0, 1, 2.

Let D = Z ⊕ Z/4Z, denote d0 = (1, 0), d1 = (0, 1) and

∆(d0) = d0 ⊗ d0, ∆(d1) = d0 ⊗ d1 + d1 ⊗ d0.

Prove that the map

f : C → D, c0 �→ d0, c1 �→ 2d1, c2 �→ 0,

is a Z-coalgebra morphism and ∆(c2) �∈ c2 ⊗ C + C ⊗ c2 (which implies that
Ke f = Zc2 is not a coideal in C) (Nichols and Sweedler [168]).

(6) Prove that the tensor product of coalgebras yields the product in the category
of cocommutative coassociative coalgebras.

(7) Let (C,∆C , εC) and (D,∆D, εD) be R-coalgebras with an R-linear mapping
ω : C ⊗R D → D ⊗R C. Denote by C�ωD the R-module C ⊗R D endowed
with the maps ∆̄ and ε̄ as in 2.14. The map ω is said to be left or right
conormal if for any c ∈ C, d ∈ D,

(ID ⊗ εC)ω(c⊗ d) = ε(c)d or (εD ⊗ IC)ω(c⊗ d) = εD(d)c.

Prove:
(i) The following are equivalent:
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(a) ω is left conormal;
(b) εC ⊗ ID : C�ωD → D respects the coproduct;
(c) (IC⊗RD ⊗R ε̄) ◦ ∆̄ = IC⊗RD.

(ii) The following are equivalent:

(a) ω is right conormal;
(b) IC ⊗ εD : C�ωD → C respects the coproduct;
(c) (ε̄⊗R IC⊗RD) ◦ ∆̄ = IC⊗RD.

References. Caenepeel, Militaru and Zhu [9]; Nichols and Sweedler [168];
Sweedler [45]; Wisbauer [210].
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3 Comodules

In algebra or ring theory, in addition to an algebra, one would also like to
study its modules, that is, Abelian groups on which the algebra acts. Cor-
respondingly, in the coalgebra theory one would like to study R-modules
on which an R-coalgebra C coacts. Such modules are known as (right) C-
comodules, and for any given C they form a category MC , provided mor-
phisms or C-comodule maps are suitably defined. In this section we define
the category MC and study its properties. The category MC in many re-
spects is similar to the category of modules of an algebra, for example, there
are Hom-tensor relations, there exist cokernels, and so on, and indeed there
is a close relationship between MC and the modules of the dual coalgebra
C∗ (cf. Section 4). On the other hand, however, there are several marked
differences between categories of modules and comodules. For example, the
category of modules is an Abelian category, while the category of comodules
of a coalgebra over a ring might not have kernels (and hence it is not an
Abelian category in general). This is an important (lack of) property that is
characteristic for coalgebras over rings (if R is a field then MC is Abelian),
that makes studies of such coalgebras particularly interesting. The ring struc-
ture of R and the R-module structure of C play in these studies an important
role, which requires careful analysis of R-relative properties of a coalgebra or
both C- and R-relative properties of comodules.

As before, R denotes a commutative ring,MR the category of R-modules,
and C, more precisely (C,∆, ε), stands for a (coassociative) R-coalgebra (with
counit). We first introduce right comodules over C.

3.1. Right C-comodules. For M ∈ MR, an R-linear map �M : M →
M ⊗R C is called a right coaction of C on M or simply a right C-coaction.
To denote the action of �M on elements of M we write �M(m) =

∑
m0⊗m1.

A C-coaction �M is said to be coassociative and counital provided the
diagrams

M
�M ��

�M

��

M ⊗R C
IM⊗∆
��

M ⊗R C
�M⊗IC ��M ⊗R C ⊗R C,

M
�M ��

IM ����
���

���
��

M ⊗R C
IM⊗ε
��
M

are commutative. Explicitly, this means that, for all m ∈M ,∑
�M(m0)⊗m1 =

∑
m0 ⊗∆(m1), m =

∑
m0ε(m1).

In view of the first of these equations we can shorten the notation and write

(IM ⊗∆) ◦ �M(m) =
∑

m0 ⊗m1 ⊗m2,




